
Safe Agents in Space: Preventing and Responding to Anomalies in the
Autonomous Sciencecraft Experiment

Daniel Tran, Steve Chien, Gregg Rabideau, Benjamin Cichy
Jet Propulsion Laboratory, California Institute ofTec1mology

Firstname.Lastname@jpl.nasa.gov

Abstract
This paper describes the design of the
Autonomous Sciencecraft Experiment, a software
agent that has been rnnning on-board the EO-I
spacecraft since 2003. The agent recognizes
science events, retargets the .\pacecraft to
respond to the science events, and reduces data
downlink to only the highest value science data.
The autonomous science agent was designed
using a layered architectural approach with
specific redundant safeguards to reduce the risk
of an agent malfUnction to the EO-I spacecraft.
The agent was designed to be "safe" by first
preventing anomalies, then by automatically
detecting and responding to them when possible.
This paper describes elements of the design that
increase the safety of the agent, the anomalies
that occurred during the experiment, and how
the agent responded to these anomalies.

1: Introduction

Autonomy tec1mologies have incredible
potential tor evolutionize space exploration. I n
the current mode of operations, space missions
involve meticulous ground planning significantly
in advance of actual operations. In this
paradigm, rapid responses to dynamic science
events can require substantial operations effort.
Artificial intelligence tec1mologies enable
onboard software to detect science events, re
plan upcoming mission operations, and enable
successful execution of re-planned responses.
Additionally, with onboard response, the
spacecraft can acquire data, analyze it onboard to
estimate its science value, and only downlink the
highest priority data. For example, a spacecraft
could monitor active volcano sites and only
downlink i mages when t he volcano is erupting.
Or a spacecraft could monitor ice shelves and
downlink images when calving activities are
high. Or a spacecraft could monitor river
lowlands, and downlink images when flooding
occurs. This onboard data selection can vastly
improve the science return of the mission by
improving the efficiency of the limited

downlink. Thus, there is significant motivation
for onboard autonomy.

However, building autonomy software for
space missions has a number 0 fkey challenges
and constraints; many of these issues increase the
importance of building a reliable, safe, agent.
I . Limited, intermittent communications to the

agent. A spacecraft in low earth orbit
typically has 8 communications
opportunities per day. This means that the
spacecraft must be able to operate for long
periods of time without supervision. For
deep space missions the spacecraft may be
in communications far less frequently.
Some deep space missions only contact the
spacecraft once per week, or even once
every several weeks.

2. Spacecraft are very complex. A typical
spacecraft has thousands of components,
each of which must be carefully engineered
to survive rigors of space (extreme
temperature, radiation, physical stresses).
Add tot his t he fact t hat many components
are one-of-a-kind and thus have behaviors
that are hard to characterize.

3. Limited observability. Because processing
telemetry is expensive, onboard storage is
limited, and downlink bandwidth is limited,
engineering telemetry is limited. Thus
onboard software must be able to make
decisions on limited information.

4. Limited computing power. Because of
limited power onboard, spacecraft
computing resources are usually very
constrained. An average spacecraft CPUs
offer 25 MIPS and 128 MB RAM - far less
than a typical personal computer.

5. High stakes. A typical space mission costs
hundreds of millions of dollars and any
failure has significant economic impact.
Over financial cost, many launch and/or
mission opportunities are limited by
planetary geometries. In these cases, if a
space mission is lost it may be years before
another similar mission can be launched.
Additionally, a space mission can take years

to plan, construct the spacecraft, and reach
their targets. This delay can be catastrophic.

This paper discusses our efforts to build and
operate a safe autonomous space science agent.
The principal contributions of this paper are as
follows:
1. We describe our layered agent architecture

and how that enables additional agent safety.
2. We describe our knowledge engineering and

model review process designed to enforce
agent safety.

3. We describe the process the agent use to
detect anomalies and how it responds to
these situations.

4. We describe several of the anomalies that
occurred during in-flight testing, the
response of the agent, and what steps were
taken to prevent its occurrence in the future.

This work has been done for the Autonomous
Sciencecraft Experiment (ASE) [2], an autonomy
software package currently in use on NASA's
New Millennium Earth Observer_One (EO-I) [5]
spacecraft.

In this paper we address a number of issues
from the workshop call.

Definition of agent safety and how to build a
safe agent - we define agent safety as ensuring
the health and continued operation of the
spacecraft. We design our agent to have
redundant means to enforce all known spacecraft
operations constraints. We also utilize
declarative knowledge representations, whose
models are extensively reviewed and tested. We
use code generation technologies to
automatically generate redundant checks to
improve software reliability. Additionally, our
experiment is also designed to fly in a series of
increasing autonomous phases, to enable
characterization of performance of the agent and
to build confidence.

Robust to environment (unexpected) - our
agent must be robust to unexpected
environmental changes. Our agent uses a classic
layered architecture approach to dealing with
execution uncertainties.

How to constrain agents - because of strong
concerns for safety, our agent architecture is
designed to enable redundancy, adjustable
autonomy, and fail-safe disabling of agent
capabilities. The layering of the agent enables
lower levels 0 f t he a gent to inhibit higher-level
agent behavior. For example, the task executive
systems (SCL) does not allow dangerous
commands from the planner to be sent on to the
flight software. The flight software bridge (FSB)
can be instructed to disable any commands from

the autonomy software or to shutdown
components of or the entire autonomy software.
The EO-I flight software also includes a fault
protection function designed to inhibit
potentially hazardous commands from any
source (including the autonomy software, stored
command loads from the ground, or real-time
commands).

The remainder of this paper is organized as
follows. First we describe the ASE software
architecture, with an emphasis on how it
enhances safe agent construction. Next we
discuss the efforts made top revent, detect, and
respond to in-flight anomalies. Fin'-!Jly we
present several of the anomalies tihi> have
occurred to date. We describe how the software
responded to these anomalous situations, and the
steps taken to prevent it from occurring in the
future.

2: ASE

The autonomy software on EO- I is organized
as a traditional three-layer architecture [4] (See
Figure I.). At the top layer, the Continuous
Activity Scheduling Planning Execution and
Replanning (CASPER) system [1, 7] is
responsible for mission planning functions.
Operating on the tens-of-minutes timescale,
CASPER responds to events that have
widespread (across orbits) effects, scheduling
science activities that respect spacecraft
operations and resource constraints. Activities in
a CASPER schedule become inputs to the
Spacecraft Command Language (SCL) execution
system [6].

SCL initiates a set of scripts that issue the
complete sequence of commands to the flight
software. Prior to issuing each command,
constraints are checked again to confirm the
validity of the command as well as ensure the
safety of the spacecraft. After the command is
sent, SCL checks for a successful initiation and
completion of the command. When a full
sequence for a data collection is complete, one or
more image processing algorithms are performed
which may result in new requests to the planner.

2.1: Mission Planning

Responsible for long-term mission planning, the
ASE planner (CASPER) accepts as inputs the
science and engineering goals and ensures high
level goal-oriented behavior. These goals may
be provided by either the ground operators or
triggered by the onboard science algorithms.
The model-based planning algorithms enables

Figure 1. Autonomy Software Architecture

2.2: Robust Execution

The image processing software is scheduled by
CASPER and executed by SCL where the results
from the science analysis software generate new
observation requests presented to the CASPER
system for integration in the mission plan.

This layered architecture for the autonomy SW
is designed such that each lower layer is
verifying the output of the higher layers.
Requests from the science analysis, or from
operators on the ground, are checked by the
planner prior to being sent to SCL. The planner
activities are checked by SCL prior to being sent

2.3: Science Analysis

as ground generated command sequences. This
interface is implemented by the Autonomy Flight
Software Bridge (FSB), which takes a specified
set of autonomy software messages and issues
the corresponding FSS commands, The FSB
also implements a set of FSS commands that it
responds to that perform functions such as
startup of the autonomy software, shutdown of
the autonomy software, and other autonomy
software configuration actions.

The FSS accepts low-level spacecraft
commands which can be either stored command
loads uploaded from the ground (e.g. ground
planned sequences) or real-time commands (such
as commands from the ground during an uplink
pass). The autonomy software commands appear
to the FSS as real-time commands. As part of its
core, the FSS has a full fault and spacecraft
protection functionality which is designed to:
I. Reject commands (from any source) that

would endanger the spacecraft.
2. When in situations that threatens spacecraft

health, execute pre-determined sequences to
"safe" the spacecraft and stabilize it for
ground assessment and reconfiguration.

For example, if a sequence issues commands
that point the spacecraft imaging instruments at
the sun, the fault protection software will abort
the maneuver activity. Similarly, if a sequence
issues commands that would expend power to
unsafe levels, the fault protection software will
shut down non-essential subsystems (such as
science instruments) and orient the spacecraft to
maximize solar power generation. While the
intention of the fault protection is to cover all
potentially hazardous scenarios, it is understood
that the fault protection software is not foolproof.
Thus, there is a strong desire to not command the
spacecraft into any hazardous situation even if it
is believed that the fault protection will protect
the spacecraft.

.... ComrJ'llllds
••.••• OllWle...~

\, Conlrol Signals
\ (verj low I_~

••..

"

\, PIII!1' 01 AclMlie.

\. (hi;h '-'n

Imllg&

ObseMlion--Gollis _

l
CASPER Planner

- rtspon,e In 10, of millutes

C'onverlll(lfl,dl Fllq~lt SJftWt1re
lellt>xll.. e r.=oc;.pons,=.

•..
High I_I SIC StlIlIl>1'~tlrmlllion

....

-
o....lfIighl "'.

Times

Sensor .~.l

T81o~.. •••
"

rapid response to a wide range of operations
scenarios based on a deep model of spacecraft
constraints, including faster recovery from
spacecraft anomalies. CASPER uses repair-based
techniques [I] that allow the planner to make
rapid changes to the current plan to
accommodate the continuously changing
spacecraft state and science requests. During
repair, CASPER collects a set of conflicts that
represent violations of spacecraft constraints.
Generic algorithms are used to select and analyze
a conflict to produce a set of potential plan
modifications that may resolve the conflict.
Heuristics are used to select a potential
modification, and the plan is updated and
reevaluated for new conflicts. This process
continues until no conflicts remain.

At the middle layer, SCL is responsible for
generating and executing a detailed sequence of
commands that correspond to expansions of
CASPER activities. SCL also implements
spacecraft constraints and flight rules. Operating
on the several-second timescale, SCL responds
to events that have local effects, but require
immediate attention and a quick resolution. SCL
performs activities using scripts and rules. The
scripts link together lower level commands and
routines and the rules enforce additional flight
constraints.

SCL issues commands to the EO-I flight
software system (FSS), the basic flight software
that operates the EO-I spacecraft. The interface
from SCL to the EO-l FSS is at the same level

on to the FSS. Finally, the FSS fault protection
checks the SCL outputs as well.

3: Anomalies

As with any large software system and
complex science scenarios, anomalous situations
are expected to occur during operations. This
section will describe how the ASE model was
developed to enforce agent safety. We also
discuss how the agent was developed to detect
for anomalies and several of the responses
encoded within the model. Finally, we describe
several of the anomalies that have occurred
during in-flight testing, the cause of the
anomalies, how the agent responded to these
situations, and modifications taken to prevent it
from occurring in the future.

3.1: Prevention

With the control aspects of the autonomy
software embodied in the CASPER & SCL
models, our methodology for developing and
validating the CASPER and SCL models is
critical to our safe agent construction process.
These models include constraints of the physical
subsystems including: their modes of operation,
the commands used to control them, the
requirements of each mode and command, and
the effects of commands. At higher levels of
abstraction, CASPER models spacecraft
activities such as science data collects and
downlinks, which may correspond to a large
number of commands. These activities can be
decomposed into more detailed activities until a
suitable level is reached for planning. CASPER
also models spacecraft state and its progression
over time. This includes discrete states such as
instrument modes as well as resources such as
memory available for data storage. CASPER
uses its model to continuously generate and
repair schedules, tracking the current spacecraft
state and resources, the expected evolution of
state and resources, and the effects on planned
activities.

SCL continues to model spacecraft activities at
finer levels of detail. These activities are
modeled as scripts, which when executed, may
execute additional scripts, ultimately resulting in
commands to the EO-I FSS. Spacecraft state is
modeled as a database of records in SCL, where
each record stores the current value of a sensor,
resource, or sub-system mode. The SCL model
also includes flight rules that monitor spacecraft
state, and execute appropriate scripts in response

to changes in state. SCL uses its model to
generate and execute sequences that are valid
and safe in the current context. While SCL has a
detailed model of current spacecraft state and
resources, it does not generally model future
planned spacecraft state and resources.

Development and verification of the EO-I
CASPER and SCL models was a multiple step
process.
I. First a target set of activities was identified.

This was driven by a review of existing
documents and reports. This allowed the
modeler to get a high-level overview of the
EO-I spacecraft, including its physical
components and mission objectives.
Because EO-I is currently in operation,
mission reports were available from past
science requests. These reports were helpful
in identifYing the activities performed when
collecting and downlinking science data. For
example, calibrations are performed before
and after each image, and science requests
typically include data collection from both
the Hyperion (hyperspectral) and Advanced
Land Imager (ALI) instruments.

2. Once the activities were defined, a formal
EO-l operations document [3] was reviewed
to identifY the constraints on the activities.
For example, due to thermal constraints, the
Hyperion cannot be left on longer than 19
minutes, and the All no longer than 60
minutes. The EO-l operations team also
provided spreadsheets that specified timing
constraints between activities. Downlink
activities, for example, are often specified
with start times relative to two events:
acquisition of signal (AOS) and loss of
signal (LOS). Fault protection documents
listing fault monitors (TSMs) were also
consulted, using the reasoning that
acceptable operations should not trigger
TSMs.

3. With the model defined, CASPER was able
to generate preliminary command sequences
from past science requests that were
representative of flight requests. These
sequences were compared with the actual
sequences for the s arne request. Significant
differences between the two sequences
identified potential problems with the
model. For example, if two commands were
sequenced in a different order, this may
reveal an overlooked constraint on one or
both of the commands. We were also
provided with the actual downlinked
telemetry that resulted from the execution of

the science observation request. This
telemetry is not only visually compared to
the telemetry generated b y ASE, but it can
also be "played back" to a ground version of
the ASE software to simulate the effects of
executing sequences. The command
sequences were aligned with the telemetry to
identify the changes in spacecraft s tate and
the exact timing of these changes. Again,
any differences between the actual telemetry
and the ASE telemetry revealed potential
errors in the model. A consistent model was
defined after several iterations of generating
commands and telemetry, comparing with
actual commands and telemetry, and fixing
errors. These comparisons against ground
generated sequences were reviewed by
personnel from several different areas of the
operations staff to ensure acceptability (e.g.
overall operations, guidance, navigation and
control, science operations, instrument
operations).

4. Model reviews were conducted where the
models are tabletop reviewed by a team of
personnel with a range of operations and
spacecraft background. This is to ensure
that no incorrect parameters or assumptions
are represented in the model.

Finally, a spacecraft safety review process was
performed. By studying the description of the
ASE software and the commands that ASE
would execute, experts from each of the
spacecraft subsystem areas (e.g., guidance,
navigation and control, solid state recorder,
Hyperion instrument, power) derived a list of
potential hazards to spacecraft health. For each
of these hazards, a set of possible safeguards was
conjectured: implemented by operations
procedure, implemented in CASPER,
implemented in SCL, and implemented in the
FSS. Every safeguard able to be implemented
with reasonable effort was implemented and
scheduled for testing. An analysis for two of the
risks is shown below.

Instruments
Instruments

overheat from being
exposed to sun

left on too long

For each tum on
Verify orientation

command, look for
the following tum otl

of spacecraft
Operations command. Verify that

during periods

they are within the
when instrument

maximum separation.
covers are open.

Maneuvers must
High-level activity be planned at

decomposes into tum timcs when the

CASPER
on and tum off covers are closed

activities that are (otherwise,
with the maximum instruments are

separation. pointing at the
earth)

Rules monitor the
Constraints

"on" time and issue a
prevent maneuver

SCL
tum off command if

scripts tram

left on too long.
executing if

covers arc open.

Fault protection
Fault protection wi II safe the

FSS
software will shut spacecraft if

down the instrument covers are open
ifleft on too long. and pointing near

the sun.

Table 1: Sample safety analysis for two
risks

3.2: Detection

The EO-l FSS has a set of Telemetry and
Statistics Monitoring (TSM) tasks that monitor
the state of the spacecraft. TSMs typically detect
anomalies by comparing a state value with
expected thresholds for that value.

The FSS also includes processes for
transmitting engineering data from the spacecraft
subsystems for recording and future playback.
ASE tapped into this data stream so that it could
automatically monitor spacecraft state and
resources. The data is received at 4Hz and the

relevant information is extracted and stored into
the SCL database. SCL uses the
information when making decisions
command execution. Spacecraft state
resources are checked:

latest
about

and

needed, these log files are downlinked either to
debug new issues or to further validate the
success of the test.

3.3: Response

• Prior to executing the command to verify
command prerequisites are met.

• After executing the command to verify the
receipt of the command.

• After an elapsed time period when the
effects of the command are expected.

The SCL model also contains a set of rules
that continuously monitor the state of the
spacecraft and relays any change to the database
to CASPER. CASPER compares the new data
with its predict~ values and makes any
necessary updates the predictions. Effects of
these updates to the current schedule are
monitored and conflicts detected. If a set of
conflicts are detected, CASPER will begin
modifying the plan to find conflict-free schedule.

During ground contacts, mission operators can
monitor the EO-l spacecraft telemetry in real
time, as well as playback recorded telemetry and
messages. Limits are set on the various data
points to alarm operators when values fall out of
their expected ranges. To manually monitor
ASE, we developed a set of telemetry points for
each of the ASE modules. This is typically high
priority heath and status data that is continuously
saved to the onboard recorder and downlinked
during ground contacts. The real-time
engineering data for EO-I is monitored with the
ASIST ground software tool developed at GSFC.

The FSB, which acts as a gateway, has several
telemetry points to verify t hat we have enabled
or disabled the flow of spacecraft commands and
telemetry. It also has command counters for
those issued to the ASE software. SCL provides
telemetry on its state including counters for the
number of scripts executed. CASPER provides
statistics on the planning algorithm including the
types of conflicts that it addresses and what
changes it makes to the plan when repairing the
conflicts. It also generates telemetry that
identifies any differences it finds between the
actual spacecraft state and the state it expects
during the execution of the plan.

The telemetry points for each module is useful
in providing a high level view of how the
software is behaving, but debugging anomalies
from this would be difficult. Therefore, each
software module also saves more detailed data to
log files stored on a RAM disk. As they are

Anomaly detection may trigger a response
from anyone of the software modules, or from
the operations team. At the highest level,
CASPER can respond to some anomalies by
replanning future activities. For example,
CASPER may delete low priority requests to
alleviate unexpected over-utilization of
resources. At the middle layer, SCL can respond
to small anomalies with robust execution. In
most cases, it can delay the execution of a
command if the spacecraft has not reached the
state required by the command. Because of
interactions within a sequence, however, a
command cannot be delayed indefinitely and
may eventually fail. If a critical command fails,
SCL may respond with additional commands in
attempt to recover from the failure. This is
typically a retry of the commands or set of
commands that has failed. If the command
remains failed, the effects of the command do
not propagate to the SCL database, which may
trigger CASPER to replan. Finally, at the lowest
level, the EO-l FSS fault protection is used to
detect potentially hazardous spacecraft states and
trigger commands to transition the spacecraft out
of those states. For example, the Hyperion
temperature increases while the instrument is in
use. The FSS fault protection monitors this
temperature and initiates shut-down commands
when the maximum temperature is exceeded.

4: Case Study

In this section, we describe several of the in
flight anomalies that have occurred, including
the responses taken by the agent, and the changes
performed to prevent future anomalies from
occurring.

4.1

The anomalies that have occurred onboard can
be classified into the following types: modeling,
software, operator, hardware.

Modeling - This is the most common type
of error, caused by an incorrect model of the
spacecraft within C ASPER and SCL. Many of
these errors were not detected during testing and

validation because the EO-l miSSion did not
have a high-fidelity testbed, requiring the
development of simulators that made several
incorrect assumptions of the spacecraft behavior.

Software - These are your standard software
implementation errors that occur with any large
project. The design of the agent needed to be
robust to errors that occur between the CASPER,
SCL, FSW, and science modules.

Operator - Commands are regularly issued
from mission operators during ground contacts.
These commands may modify the state of the
spacecraft, so the agent will need to be robust to
these situations.

Hardware - The Livingston 2 software
component (described in section 5) was designed
to detect and diagnose this type of error.
However, because hardware errors are rare on
spacecraft systems, we chose not to focus on
detecting these.

The remainder of this section will describe four
anomalies in detail, mainly of the modeling,
software, and operator type. We will describe
how they were caused, how the agent responded
to the anomaly, and what work was done to
prevent it from occurring in the future.

4.2
Onboard Anomalies

April 1, 2004
During this early stage of the project, we were

testing a single response scenario where the
onboard science module would analyze an
image, and issue requests to the onboard planner
for more images of that target. The scenario
went as follows:

• Image Prudhoe Bay, Alaska
• Playback data from the solid state

recorder into RAM for image processing
(bandstripping)

• Run image classifier to identify snow,
water, ice, and land. This was scheduled
to run immediately after the bandstripping
process.

• Run image classifier to identify for cloud
coverage. T his was scheduled tor un 60
minutes after the bandstripping process.

• If the classification of the scene was
above a threshold defined by mission
scientists, request additional images of
Prudhoe Bay.

Several of the constraints modeled within
CASPER and SCL were:

• The bandstripping process cannot begin
unless the target Prudhoe Bay was
successfully imaged

• The image classifiers cannot begin unless
the bandstripping process was successful

During the first ground contact following this
scenario, mission operators noticed several
warnings from SCL telemetry and that the
onboard science module did not perform any
image processing. After collecting log files from
SCL and CASPER, and replaying back telemetry
collected during the test, it was determined that
SCL had failed the bandstripping script because
of a time out during the verification of the
command completion. In actuality, this
verification failure was not a result of
bandstripping failing, but of a bug within the
flight software time code. It is still interesting,
however, to examine the response of the agent.

The failure of the bandstripping script resulted
in a lack of change to a SCL database record.
This record is continuously monitored by
CASPER and a conflict with the scheduled
image classifier algorithm was recognized.
However, because the first image classifier
algorithm was scheduled immediately after
bandstripping, CASPER had already committed
to executing the classifier activity. When making
this type of commitment, CASPER locks the
activity (preventing any re.scheduling) and sends
the execution request to SCL. The command
was received by SCL, but failed the pre-requisite
check, blocking the command from being sent to
the science module.

The second image classifier was scheduled 60
minutes after the end of bandstripping, and thus
CASPER was able to modify the plan to resolve
the conflict by removing it from the schedule.

This anomaly demonstrated how the layered
architecture ensured the safety of the agent.
CASPER was not responsive enough to prevent
the first image classifier from being issued to
SCL, but the SCL pre-requisite check failed and
thus the command was not issued. However in
the second case, CASPER was able to respond to
this failure by removing the subsequent image
processing activity from the schedule.

A modification of the agent architecture to
prevent these false-positive anomalies from
occurring would be to have redundant checks in
the completion of the commands. In this
example, a single SCL database item indicated
that bandstripping had failed, when in fact, it had
succeeded. The model could have been updated
to check multiple database records for the status

of the bandstripping, instead of relying on solely
on a single data point to verify completion of the
command.

July 15, 2004
This anomaly demonstrates how SCL was able

to respond to a verification failure of command
sequence. During this test, the anomaly occurred
during normal operations for an X-Band ground
contact. The scenario was:

• Using the X-Band transmitter, downlink
all images from the solid state recorder

• Clear all images from the solid state
recorder

Several of the constraints modeled were:
• The correct voltage/current level of

transceiver must be met prior to operating
X-Band activities.

• The downlink must complete successfully
prior to clearing all the images from the
solid state recorder.

During the ground contact, mission operators
noticed several warnings from SCL and also that
EO-l had not begun the X-Band downlink of
images collected. The operators manually
initiated the X-Band contact and completed
dumping the data. After analyzing log files, it
was determined that a prerequisite failure in the
SCL model for the current/voltage of the
transceiver prevented the contact from being
initiated. As a result of the X-Band failure, SCL
also rejected the command to clear all the images
from the solid state recorder.

This was actually an error within the SCL
model. An early version of the model included a
constraint that the transceiver cannot be powered
on unless the current/voltage was at the correct
level. However, the threshold values for the
current/voltage in reality are not valid until the
transceiver is powered on.

Unfortunately, this modeling error slipped
through our testing and validation process
because of the lack of a high fidelity testbed.
The EO-l testbed did not have a transceiver for
testing and therefore, the current/voltage values
were static (at the "on" levels) in the simulation.
Without valid values on the current/voltage prior
to powering on the X-Band transceiver, our
resolution to this problem was to simply remove
the current/voltage constraint from the SCL
model.

January 31, 2005
This anomaly describes CASPER's response

to an unexpected change in the state of the

spacecraft. During one of the scheduled ground
contacts, the agent did not initiate the command
sequence as requested from mission planners.
An anomaly had occurred that had removed the
contact sequence from the mission plan. After
analysis of collected telemetry, the cause of the
anomaly was due to human intervention with the
spacecraft several h ours prior. An unscheduled
contact had been initiated by mission planners,
which was performed externally from the
onboard planner. The unscheduled contact
required mission operators to perform a blind
acquisition of EO-l and manually power on the
transceiver, changing the state of the onboard
transceiver to "on". At the end of this contact,
the operators manually powered down the
transceiver.

The change to the transceiver state resulted in
an update to the SCL database, which propagated
to the CASPER schedule and created a conflict
with the next ground contact activity. The
conflict was with a constraint in the CASPER
model that only allowed the transceiver state to
transition from "on" to "off' or from "off' to
"on". W hen the update to the transceiver state
was received, it set the current state to the
transceiver to "on". This created a conflict with
the next scheduled contact that had planned to
tum the transceiver on when the state was
already "on". To resolve this conflict, CASPER
removed the next contact from the plan. Once
the mission operator powered down the
transceiver at the end of the unscheduled contact,
subsequent contacts were conflict free, but the
deleted contact was not rescheduled due to the
risk of inserting the goal too close to its
scheduled time.

To prevent this anomaly for future operations,
we simply removed the transition constraints
from the CASPER model of the transceiver.
While not ideal, it was determined that this
presented no risk to the spacecraft, and allowed
the ASE software to support real-time contact
requests from mission planners without affecting
the remainder of the schedule.

In this anomaly, though the update to the state
of the transceiver was short-lived as it was
eventually powered off by mission operators, its
affect on the planner propagated to the next
scheduled contact, resulting in the contact being
removed from the schedule. One possible
solution to prevent this from occurring in the
future is to delay resolving conflict until
necessary. Some initial work has been started on
CASPER to support time-sensitive repair

heuristics, but is still experimental a nd was not
deployed on EO-I.

February 26, 2005
This anomaly occurred during a normal data

collect of an area in Peru. During the first
contact following this image, SCL telemetry
indicated 1 warning from execution. After
analysis of log files, this was determined to be
caused by a command verification failure when
issuing the command to close the ALI cover.
The response of SCL was to reissue the
command to close the covers, ensuring that the
covers would be closed at the end of the collect.

Further investigation into the problem showed
that the cover did indeed close after the first
command. However, due to a spike in CPU
consumption during that time, SCL was not able
to process the change in the database record
indicating that the cover was closed. While SCL
has the highest priority among the ASE tasks, it
is not higher than any of the FSS tasks. Weare
still investigating the cause for the increase in
CPU load.

In this situation, the actions of the agent were
correct in preserving the safety of the spacecraft.
However, a change to the model can be used to
ensure this anomaly does not occur in the future.
Again, similar to the first anomaly described in
this paper, redundant checks to multiple SCL
database items can be used to determine the true
state of the covers. From example, the EO- I
Hyperion instrument covers have two data-points
representing the state of the cover. One data
point indicates if the cover is either open or
closed, while the other is a continuous value,
representing how far the cover has been opened.
A check that reasons using both of these data
points would be less prone to false-positives.

5 Livingston 2

More recently (Fall 2004), in collaboration with
Ames Research Center, we have begun flying the
Livingstone 2 (L2) [12] diagnosis system. Both
L2 and CASPER use models of the spacecraft
separate from the reasoning engine: the models
are tailored for a particular application without
the need to change the software, allowing reuse
of the advanced reasoning software across
applications. The diagnostic capability of an on
board agent can then use the models to monitor
the health of the spacecraft and detect faults.
Early development of the L2 model currently

does not support responding to anomalous
situations, only detection of them.

However, during the times of the described
anomalies, L2 was not operational. Also its
current model only supports monitoring the
operations of the spacecraft and not the CASPER
or SCL software. Therefore, anomalous
situations within CASPER or SCL would not be
detected by L2.

6 Related Work

In 1999, the Remote Agent experiment (RAX)
[10] executed for a several days onboard the
NASA Deep Space One mission. RAX is an
example of a classic three-tiered architecture [4],
as is ASE. RAX demonstrated a batch onboard
planning capability (as opposed to CASPER's
continuous planning) and RAX did not
demonstrate onboard science. PROBA [II] is a
European Space Agency (ESA) mission
demonstrates onboard autonomy and launched in
2001. However, ASE has more of a focus on
model-based autonomy than PROBA.

The Three Comer Sat (3CS) University
Nanosat mission used CASPER onboard
planning software integrated with the SCL
ground and flight execution software [13]. The
3CS mission was launched in December 2004
but the spacecraft were lost due to a deployment
failure. The 3CS autonomy software includes
onboard science data validation, replanning,
robust execution, and multiple model-based
anomaly detection. The 3CS mission is
considerably less complex than EO-l but still
represents an important step in the integration
and flight of onboard autonomy software.

7 Conclusions

This paper has described the design of a safe
agent for the Autonomous Sciencecraft
Experiment along with several of the anomalies
and the software's responses that have occurred
during in-flight testing. First, we described the
salient challenges in developing a robust, safe,
spacecraft control agent. Second, we described
how we used a layered architecture to enhance
redundant checks for agent safety. Third, we
described our model development, validation,
and review. Fourth, we described how the agent
responds and detects anomalous situations.

Finally, we described several case studies of
anomalies that have occurred in-flight and the
response taken by the agent to maintain the
safety of the spacecraft.

8 Acknowledgements

Portions of this work were performed at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

References
[1] S. Chien, R. Knight, A. Stechert, R. Sherwood,

and G. Rabideau, "Using Iterative Repair to
Improve Responsiveness of Planning and
Scheduling," Proceedings ofthe Fifth
International Conference on Artificial
Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (see also
casper.jpl. nasa. gov)

[2] S. Chien et aI., "The Earth Observing One
Autonomous Science Agent", Proceedings ofthe
Autonomous Agents and Multi-Agent Systems
Conftrence, New York City, NY, July 2004.

[3] S. Chien et aI, EO I Autonomous ScienCel.:raft
Experiment Safety Analysis Document, 2003.

[4] E. Gat, Three layer architectures, in Mobile
Robots and Artificial Intelligence, (Kortenkamp,
Bonasso, and Murphy eds.), Menlo Park, CA:
AAAI Press, pp. I95-210.

[5] Goddard Space Flight Center, EO-I Mission
page: eo l.gsfc.nasa.gov

[6] Interface and Control Systems, SCL Home Page,
sclrules.com

[7] G. Rabideau, R. Knight, S. Chien, A.
Fukunaga, A. Govindjee, "Iterative Repair
Planning for Spacecraft Operations in the
ASPEN System," International Symposium
on Artificial Intelligence Robotics and
Automation in Space, Noordwijk, The
Netherlands, June 1999.

[8] G. Rabideau, S. Chien, R. Sherwood, D.
Tran, B. Cichy, D. Mandl, S. Frye, S.
Shulman, R. Bote, 1. Szwaczkowski, D.
Boyer,1. Van Gaasbeck, "Mission
Operations with Autonomy: A preliminary
report for Earth Observing-I", International
Workshop on Planning and Scheduling for
Space". Darmstadt, Germany, June 2004

[9] D. Tran, S. Chien, G. Rabideau, B. Cichy,
"Flight Software Issues in Onboard
Automated Planning: Lessons Learned on

EO-l ", International Workshop on Planning
and Schedulingfor Space. Darmstadt,
Germany. June 2004

[1O}NASA Ames, Remote Agent Experiment
Home Page,
http://ic.arc .nasa.gov/projects/remote-agent/.
See also Remote Agent: To Boldly Go
Where No AI System Has Gone Before.
Nicola Muscettola, P. Pandurang Nayak,
Barney Pell, and Brian Williams. Artificial
Intelligence 103(1-2):5.48, August 1998

[I I] The P ROBA 0 nboard Autonomy Platform,
http://www.estec.esa.nVproba/

[12]1. Kurien and P. Nayak. "Back to the future
for consistency-based trajectory tracking."
In Proceedings of the 7th National
Conference on Artificial Intelligence
(AAAl'2000),2000.

[13] S. Chien, B. Engelhardt, R. Knight, G.
Rabideau, R. Sherwood, E. Hansen, A.
Ortiviz, C. Wilklow, S. Wichman
"Onboard Autonomy on the Three Corner
Sat Mission," Proc i-SAIRAS 2001,
Montreal, Canada, June 2001.

